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Charge transfer (CT) molecular complexes (CTMC)' have
recently received much interest in a broad variety of fields, for
example, organic electronics,” (metal-)organic and molecular mag-
nets,> nonlinear spectroscopy,* and molecular exciplexes.” In
particular, photoinduced charge transfer, where little charge is
transferred upon complexation, but significant charge is transferred
upon photoexcitation, has generated much interest in the context
of novel photovoltaic phenomena and devices.®

Despite its obvious importance, theoretical treatment of the
electronic structure aspect of charge transfer excitations has largely
been confined to either very small systems where ab initio wave
function methods can be applied” or has relied on empirically
calibrated hybrid methods.® Typically, excited states in general and
optical spectra in particular can be predicted from first principles
using time-dependent density functional theory (TDDFT), which
has proven to be a reliable method for studying excited states in
broad classes of relatively large systems with good precision,’
However, it has been shown early on that the adiabatic spatially
local functionals traditionally used within TDDFT do not allow
for sufficient accuracy to describe CT excitations.'® "> This
deficiency, which is not cured by standard hybrid functionals, was
attributed to spurious self-interaction'® and missing derivative
discontinuities,'* two pervasive problems in density functional
theory (DFT) that are intimately related.'>'¢

One way to mitigate the spurious self-interaction and to retain a
good treatment of correlation is to deploy a range-separated hybrid
functional.'>'”~'® In this approach, the exchange term in the
Kohn—Sham energy functional is split into long-range and short-
range terms, for example, via r ! = rlerf(yr) + rlerfc(yr). The
short-range exchange is represented by a local potential derived
from the local-density or the generalized gradient approximations.
The long-range part is treated via an “explicit” or “exact” exchange
term. If one assumes that an appropriate choice for y is system
independent, its value can be optimized using a molecular training
set for optimizing its value. Such semiempirical approaches,
typically with y in the range of 0.3—0.5 a, !, were shown to achieve
impressive results for the ground-state properties of some classes
of systems.'®2%?! Furthermore, it was demonstrated on the
benchmark model of Dreuw and Head-Gordon,?? the C,H,+++C,F,
dimer at large molecular distances, that the range-separated hybrid
corrects the principal deficiencies of the charge transfer excitation
prediction of TDDFT.?"*

While the correct behavior at asymptotically large distances is a
major step forward, it is still no guarantee for predictive power at
realistic donor—acceptor distances.>* Asymptotically correct be-
havior is essentially a consequence of the long-range exact
exchange, whereas quantitative prediction at intermediate distances
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Figure 1. Density difference between the excited-state and ground-state
in the benzene—TCNE complex, as computed from the excited and ground-
state Kohn—Sham wave functions. Purple and pink indicate negative and
positive electron densities, respectively, illustrating the charge transfer nature
of the excitation.

requires a judicious choice of the semilocal functional, as well as
of the range-split parameter, y. This is nontrivial because assuming
a system-independent 7y, as done in most range-split hybrids, is
only an approximation. A rigorous analysis, based on the adiabatic
connection theorem, shows that in fact y is itself a functional of
the electron density, n.'® For the homogeneous electron gas, Monte
Carlo simulations show conclusively that y(n) strongly depends
on the density.?"** Furthermore, ab initio system-specific deter-
mination of y showed that good prediction of, for example, the
ionization potential is possible, but that y can vary substantially
from 0.3 ay”! for Li, to 0.7 a," for, e.g., HF or O,.2' Proper
description of symmetrical radical cations required even larger
values, 0.9 ™' and 1.4 a,~' for Ne," and He,", respectively.?®

In this Communication, we show that with the aid of a simple,
physically motivated, first principles y-determining step, range-
separated hybrid functionals can be used successfully for quantita-
tive calculation of CT excitation energies. This brings true predictive
power to an important area usually considered “too difficult for
DFT”.

Our approach is tested on complexes formed by an aromatic
donor (Ar = benzene, toluene, o-xylene, and naphthalene) and the
tetracyanoethylene (TCNE) acceptor (see Figure 1), for which
optical absorption is available both in gas phase and in solution,?”
as well as on a second set of Ar-TCNE (Ar = anthracene and
various meso substituted derivatives) measurements in solution.?®

All calculations were performed using QCHEM 3.1,%° modified
to include the range-separated BNL functional,?' using the cc-pVDZ
basis set.>® The internal structure of the molecules in the complex
is known to be little-perturbed by complex formation'''>3!-*% and
the equilibrium distance and relative orientation of the s-stacked
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donor and acceptor determined from the conventional B3LYP*
hybrid functional is known to compare well with experiment (where
available)."'*? Therefore, B3LYP-optimized geometry was used
throughout. Typical interplanar distances were 3.3—3.9 A.

In exact Kohn—Sham theory, the energy of the highest occupied
molecular orbital (HOMO) is equal and opposite to the ionization
potential.>* This can be used to select y*' by demanding that

_gjlf{OMO:Egs(N_ 1,’}/) _ng(N;’}/) (1)

where &fiomo 1S the HOMO energy and the right-hand side of the
equation is the difference of the self-consistent ground-state energies
of the N — 1 and N electron system, all calculated for a given range-
parameter, y (this involves the typically successful approximation
that the same y is appropriate for both the N and N — 1 electron
systems). Note that the precise value of y will depend on the specific
choice for the local exchange and the exchange-correlation func-
tionals, but its determination procedure is universal.

In molecular complexes, the lowest photon energy required to
induce a CT excitation, hvcr, is given for asymptotically large
donor—acceptor distances by the Mulliken rule'

hve =1P(D) — EA(A) — 1/R )

where IP(D) and EA(A) are the donor ionization potential and
acceptor electron affinity, respectively. The last term on the right-
hand side is the Coulomb energy of attraction between the
electron—hole pair formed by the charge transfer, where R is the
intermolecular separation. For our TDDFT calculation to conform
to the Mulliken rule, the ionization energies computed from eq 1
must correspond to the HOMO energy of the neutral donor, but
also to the HOMO energy of acceptor anion. Thus, one needs to
generalize eq 1 so as to yield, as closely as possible, two limits.
We therefore look for y that minimizes the following J(y) function

JN= 3 Vehiowo T (BN, = L) — BNyl (3)

For complexes where a range-parameter y that renders a very small
J(y) can be found (which is the case for all complexes we studied),
we expect the range-separated hybrid to yield a quantitative
description of CT excitations.

To examine the practicality of this approach, consider the
example of benzene—TCNE, shown in Figure 2. In the top panel,
we show the value of J(y) for y in the range of 0.2—0.5 ay™". J(y)
changes considerably within this range, but a minimum close to
zero is obtained for y* = 0.331 a,!. Importantly, often-used y
values, for example, 0.3, 0.4, or 0.5 ay~!, yield unacceptably large
values for J, so that “y-tuning” is essential. Once it is accomplished,
TDDFT calculations using the optimal y* can be performed at
various donor—acceptor distances. CT excitations are easily identi-
fied by searching for transitions dominated by excitation from a
donor-localized orbital to an acceptor-localized orbital. The lowest
such excitation energy (corresponding to a donor HOMO to acceptor
LUMO transition) for the benzene—TCNE system is shown in the
bottom panel of Figure 2. Clearly, because y* almost exactly
nullifies J, convergence to Mulliken’s rule at large R is excellent.
For comparison, with y = 0.5 the 1/R slope is still maintained, but
the intercept is too high by ~1 eV. With B3LYP,** this Mulliken
rule is completely violated: the slope is much too small and the
intercept is more than 1 eV too low.

With the asymptotic behavior enforced, we expect proper balance
between the local and nonlocal exchange components. In Table 1
we compare the calculated and experimental gas-phase results for
various Ar—TCNE complexes. It is readily seen that the B3ALYP
results are unacceptably low and predictive power is absent. Results
of generalized-gradient (GGA) calculations (not shown) are even
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Figure 2. Tuning y in the benzene—TCNE complex. Top: J of eq 3 as a
function of y. The optimal y is 0.331 for which J is very small. Bottom:
the Mulliken rule, compared to TDDFT results obtained from the optimal
¥, as a function of inverse intermolecular separation.

Table 1. Excitation Energies (eV) and Oscillator Strengths of
Several Gas Phase Ar—TCNE Systems: Theory and Experiment

B3LYP BNL y* exp?’

Ar E f BNLy=05  E f E f
benzene 2.1 0.03 44 033 3.8 0.03 3.59 0.02
toluene 1.8 0.04 4.0 032 34 0.03 336 0.03
o-xylene 15 ~0 3.7 031 3.0 001 3.15 0.05
naphthalene 0.9 ~0 3.3 032 27 ~0 260 001

lower than the B3LYP ones. With the range-split BNL functional,?!
excitation energies determined with an “off-the-shelf” v value of
0.5 ap” ! are much too high with respect to experiment. Similar
conclusions for both B3LYP and computations with an otherwise-
optimized range-separation parameter were drawn in ref 24. But
with y*, quantitative agreement is obtained to within +0.2 eV. For
benzene and toluene, the theoretical oscillator strengths are also in
good agreement with experiment but are too weak for xylene and
naphthalene. This is likely a basis-set issue, as oscillator strengths
are much more sensitive to the basis set than the excitation energies.

Most experimental data on CT excitations are collected in solution.
This complicates direct comparison with theory due to the need for a
solvation model. By comparing the calculated excitation energies of
several Ar—TCNE systems in gas phase and in solution (using
methylene chloride as the solvent) we found that the SS(V)PE solvation
model,* as implemented in QCHEM, predicts very small changes in
the excitation energy. For example, for toluene—TCNE the B3LYP
CT excitation energy is reduced from 1.8 to 1.75 eV, that is, by merely
0.05 eV. Similar conclusions were reported for ground-state properties
in a previous study'' and a similar change was found by us with BNL
calculations. Experimentally, the solvent effect is significantly larger,
lowering the CT excitation energies by 0.32 eV on average. Thus, it
is not possible to rely on the solvation model for this class of systems
and the only reasonable way to proceed is to assume that subtraction
of 0.32 eV from the gas phase calculations makes them comparable
to experiments in solvent.

Using this assumption, we studied an additional series of
anthracene substituted derivatives in methylene chloride. The results
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Table 2. Excitation Energies (eV) in Solution of Several
Substituted Anthracene—TCNE Systems: Calculation® and
Experiment

Supporting Information Available: Absolute energies and B3LYP-
optimized geometries of the calculated structures and complete ref 29.
This material is available free of charge via the Internet at http:/
pubs.acs.org.

BNL

substituent PBE B3LYP E(y=05 y* E(y=03) exp>®
none 0.9 1.0 2.3 0.31 1.82 1.73
9-cyano fail 0.5 2.6 0.30 2.03 2.01
9-chloro 0.9 1.0 23 0.31 1.82 1.74
9-carbo-methoxy 0.8 0.9 24 0.30 1.84 1.84
9-methyl 1.0 1.1 2.1 0.30 1.71 1.55
9-nitro 06 09 2.8 0.30 2.12 2.03
9.10-dimethyl 1.3 1.4 2.1 0.30 1.77 1.44
9-formyl 0.8 1.0 2.5 0.30 1.95 1.90
9-formyl 10-chloro 0.8 0.9 2.5 0.30 1.96 1.96

“ Taking the gas phase result and subtracting 0.32 eV, as discussed in
the text.

are given in Table 2. As before, GGA results are much too low,
B3LYP results are somewhat larger but still unacceptable. BNL
results with = 0.5 are too high, but BNL results with the optimal
y* offer quantitatively meaningful agreement. The largest deviations
are observed for the methyl and dimethyl substituents, 0.16 and
0.33 eV, respectively. This may be due to the simplistic treatment
of solvation, which may be less than ideal for these two systems.

In summary, we have shown how charge transfer excitations can
be calculated quantitatively for molecular complexes using TDDFT
without an empirical range-constant. We demonstrated the predictive
power of the approach using various aromatic donor—TCNE
acceptor complexes. The approach relies on a first principles
procedure for tuning the range-parameter in range-separated hybrid
functionals (demonstrated here for the BNL functional, but ap-
plicable to other ones as well). This procedure is to be applied for
each studied complex, in agreement with previous studies that have
shown the necessity of molecule-specific range-parameter tuning
for other properties.?'® It consists of a balanced minimization of
the deviation of the HOMO eigenvalues from the total energy
difference calculation of the ionization potential for both the neutral
donor and the anionic acceptor. The minimal deviation obtained is
an indication for the quality of the calculation and failure to obtain
it can serve as a warning mechanism against spurious predictions.
Once the range parameter is tuned, correct asymptotic behavior is
guaranteed and remaining errors in the excitation energies are
primarily due to the quality of the local correlation energy
functional, the latter also being, in principle, dependent on the range-
parameter.'® This paves the way to systematic nonempirical
quantitative studies of charge-transfer excitations in real systems,
a task hitherto considered to be “too difficult for time-dependent
density functional theory”.
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Note Added after ASAP Publication. The reference in Table 2
was corrected from 27 to 28 in the version published on the web on
February 25, 2009.
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